The Gleim FAR/AIM is published annually. Gleim keeps you up-to-date with FAA changes via online and email updates. Changes to the FARs can be released by the FAA at any time during the year. The AIM is updated by the FAA twice a year.

The Gleim updates are listed by the FAA release date. The effective date, which is sometimes the same as the release date, is provided as well.
PART 1—DEFINITIONS AND ABBREVIATIONS

Sec. 1.1 General definitions. On pages 21 and 23-24, add the following definitions:

* * * * *

Model aircraft means an unmanned aircraft that is:
(1) Capable of sustained flight in the atmosphere;
(2) Flown within visual line of sight of the person operating the aircraft; and
(3) Flown for hobby or recreational purposes.

* * * * *

Small unmanned aircraft means an unmanned aircraft weighing less than 55 pounds on takeoff, including everything that is on board or otherwise attached to the aircraft.

Small unmanned aircraft system (small UAS) means a small unmanned aircraft and its associated elements (including communication links and the components that control the small unmanned aircraft) that are required for the safe and efficient operation of the small unmanned aircraft in the national airspace system.

* * * * *

Unmanned aircraft means an aircraft operated without the possibility of direct human intervention from within or on the aircraft.

* * * * *

PART 91—GENERAL OPERATING AND FLIGHT RULES

Sec. 91.203 Civil aircraft: Certifications required. On page 143, revise paragraph (a)(2) as follows:

(a) * * *

(2) An effective U.S. registration certificate issued to its owner or, for operation within the United States, the second copy of the Aircraft Registration Application as provided for in Sec. 47.31(c), a Certificate of Aircraft registration as provided in part 48, or a registration certification issued under the laws of a foreign country.

* * * * *
NTSB Part 830—Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and Preservation of Aircraft Wreckage, Mail, Cargo, and Records

Sec. 830.5 Immediate notification. On page 402, revise the introductory text and paragraphs (a) introductory text and (a)(10) as follows:

The operator of any civil aircraft, or any public aircraft not operated by the Armed Forces or an intelligence agency of the United States, or any foreign aircraft shall immediately, and by the most expeditious means available, notify the nearest National Transportation Safety Board (NTSB) office, when:

(a) An aircraft accident or any of the following listed serious incidents occur:

(10) Airborne Collision and Avoidance System (ACAS) resolution advisories issued when an aircraft is being operated on an instrument flight rules flight plan and compliance with the advisory is necessary to avert a substantial risk of collision between two or more aircraft.

NTSB headquarters is located at 490 L'Enfant Plaza, SW., Washington, DC 20594. Contact information for the NTSB’s regional offices is available at http://www.ntsb.gov. To report an accident or incident, you may call the NTSB Response Operations Center, at 844-373-9922 or 202-314-6290.
EXPLANATION OF CHANGES

1-1-17. GLOBAL POSITIONING SYSTEM (GPS);
5-1-16. RNAV AND RNP OPERATIONS –
This change reflects the migration from raimprediction.net to the Service Availability Prediction Tool (SAPT).

2-3-14. AIRCRAFT ARRESTING SYSTEMS – This change adds information describing how the Engineered Materials Arresting System (EMAS) is marked and clarifies guidance regarding taxiing across the runway.

3-2-4. CLASS C AIRSPACE;
4-2-4. AIRCRAFT CALL SIGNS;
4-3-10. INTERSECTION TAKEOFFS;
4-4-14. VISUAL SEPARATION;
5-5-11. VISUAL APPROACH;
7-3-8. PILOT RESPONSIBILITY;
7-3-9. AIR TRAFFIC WAKE TURBULENCE SEPARATIONS –
This change adds a new weight class designated as “Super” and updates the associated guidance as appropriate. It also includes changes to wake turbulence separation behind B757 aircraft.

4-1-20. TRANSPONDER OPERATION –
This change updates transponder and Automatic Dependent Surveillance-Broadcast (ADS-B) operational procedures while on the airport surface and airborne.

4-3-19. TAXI DURING LOW VISIBILITY –
This change updates the runway visual range (RVR) from 600 RVR to 500 RVR. It also changes Surface Movement Guidance and Control System (SMGCS) to Low Visibility Operations Surface Movement Guidance and Control System (LVOSMGCS).

4-5-7. AUTOMATIC DEPENDENT SURVEILLANCE-BROADCAST (ADS-B) SERVICES;
4-5-8. TRAFFIC INFORMATION SERVICE-BROADCAST (TIS-B);
4-5-9. FLIGHT INFORMATION SERVICE-BROADCAST (FIS-B);
4-5-10. AUTOMATIC DEPENDENT SURVEILLANCE-REBROADCAST (ADS-R) –
Safe Flight 21 is now part of the national Surveillance and Broadcast Services-Automatic Dependent Surveillance-Broadcast (SBS/ADS-B) Program. Therefore, this change removes references to the Safe Flight 21 program and updates its contact information, including telephone numbers and website URL information. The guidance that pilots report all malfunctions to flight service stations remains unchanged.

5-1-17. COLD TEMPERATURE OPERATIONS;
5-5-4. INSTRUMENT APPROACH;
5-5-5. MISSED APPROACH –
In response to aviation industry concerns over cold weather effects on indicated altitudes versus that of an aircraft's true altitude, the FAA completed a safety study to determine if current 14 CFR Part 97 instrument approach procedures in the United States National Airspace System are at risk of compromised required obstacle clearances during time of extreme cold temperature. A safety risk management panel (SRMP) was conducted on the impact to ATC operations, and a condition of the SRMP was to add content to the Aeronautical Information Manual to assist in a pilot's awareness of the need to apply cold temperature correction. This change adds guidance under preflight planning to account for Cold Temperature Correction. It also adds the provision under pilot responsibilities that, during instrument approaches, the pilot must advise ATC when there is a need to apply cold temperature correction and, if so, how much is being applied.

5-2-2. PRE-DEPARTURE CLEARANCE PROCEDURES – The Terminal Data Link System has been upgraded to include Controller Pilot Data Link Communication Clearance (CPDLC)-Departure Clearance (DCL) messaging. The content and title have been updated to reflect this automation.

5-2-8. INSTRUMENT DEPARTURE PROCEDURES (DP) - OBSTACLE DEPARTURE PROCEDURES (ODP) AND STANDARD INSTRUMENT DEPARTURES (SID);
5-5-14. INSTRUMENT DEPARTURES –
This change clarifies previous guidance regarding visual climb over airport (VCOA) and aligns it with the definition provided in the Pilot/Controller Glossary. It also adds the requirement that pilots advise ATC when they intend to fly the VCOA procedure as early as possible prior to departure.

5-4-5. INSTRUMENT APPROACH PROCEDURE CHARTS –
This change updates the description of minimum safe altitudes (MSA) based on conventional navigation systems and RNAV. It allows for the use of the airport reference point as the center of an MSA for conventional navigation systems. This change also updates the chart note and clarifies what is expected from the pilot when the procedures visual descent angle (VDA) is removed.

5-4-14. PARALLEL ILS APPROACHES (DEPENDENT) –
This change introduces the use of 1 mile radar separation diagonally on simultaneous dependent approaches when runway centerlines are separated by at least 2,500 feet but no more than 3,600 feet. The existing paragraph is revised to account for the new 3,600 foot standard. There are no additional conditions or procedures required when utilizing the 1 NM minimum separation standard.

9-1-4. GENERAL DESCRIPTION OF EACH CHART SERIES;
Appendix 3. ABBREVIATIONS/ACRONYMS –
This change is updated to reflect that the last edition of the World Aeronautical Chart (WAC) will be published in March 2016. Current WAC editions will be effective through the previously published effective date(s). As such, all references to WAC have been deleted.

Entire Publication:
Editorial/format changes were made where necessary.
On page 443, revise the dates for the Publication Schedule as follows:

<table>
<thead>
<tr>
<th></th>
<th>Cutoff Date for Submission</th>
<th>Effective Date of Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Manual</td>
<td>6/25/15</td>
<td>12/10/15</td>
</tr>
<tr>
<td>Change 1</td>
<td>12/10/15</td>
<td>5/26/16</td>
</tr>
<tr>
<td>Change 2</td>
<td>5/26/16</td>
<td>11/10/16</td>
</tr>
<tr>
<td>Change 3</td>
<td>11/10/16</td>
<td>4/27/17</td>
</tr>
<tr>
<td>Basic Manual</td>
<td>4/27/17</td>
<td>10/12/17</td>
</tr>
</tbody>
</table>

On page 444, update the External References EXAMPLE as follows:

EXAMPLE—FAA Order 7110.65W, Air Traffic Control, is referenced as FAA Order 7110.65.

Chapter 1. AIR NAVIGATION

1-1-17. GLOBAL POSITIONING SYSTEM (GPS): On page 471, update the information regarding prediction tools in subparagraph b.5.(g)(3) as follows:

(3) Civilian pilots may obtain GPS RAIM availability information for non-precision approach procedures by using a manufacturer-supplied RAIM prediction tool, or using the Service Availability Prediction Tool (SAPT) on the FAA en route and terminal RAIM prediction website. Pilots can also request GPS RAIM aeronautical information from a flight service station during preflight briefings. GPS RAIM aeronautical information can be obtained for a period of 3 hours (for example, if you are scheduled to arrive at 1215 hours, then the GPS RAIM information is available from 1100 to 1400 hours) or a 24-hour timeframe at a particular airport. FAA briefers will provide RAIM information for a period of 1 hour before to 1 hour after the ETA hour, unless a specific timeframe is requested by the pilot. If flying a published GPS departure, a RAIM prediction should also be requested for the departure airport.

1-2-1. PERFORMANCE-BASED NAVIGATION (PBN) AND AREA NAVIGATION (RNAV): On page 478, revise paragraph title as follows:

1-2-1. GENERAL

Chapter 2. AIRPORT MARKING AIDS AND SIGNS

2-3-14. AIRCRAFT ARRESTING SYSTEMS: On page 500, revise subparagraph c. and NOTE as follows:

c. Engineered materials arresting systems (EMAS). EMAS, which is constructed of high energy-absorbing materials of selected strength, is located in the safety area beyond the end of the runway. EMAS will be marked with Yellow Chevrons. EMAS is designed to crush under the weight of commercial aircraft and will exert deceleration forces on the landing gear. These systems do not affect the normal landing and takeoff of airplanes. More information concerning EMAS is in FAA Advisory Circular AC 150/5220-22, Engineered Materials Arresting Systems (EMAS) for Aircraft Overruns.

NOTE—EMAS may be located as close as 35 feet beyond the end of the runway. Aircraft and ground vehicles should never taxi or drive across the EMAS or beyond the end of the runway if EMAS is present.

Chapter 3. AIRSPACE

3-2-4. CLASS C AIRSPACE: On page 505, delete the word “participating” from subparagraph d., revise subparagraph e.2., and add new subparagraph e.4. as follows:

d. Air Traffic Services. When two-way radio communications and radar contact are established, all VFR aircraft are:

(e) Aircraft Separation.

1. Visual separation.
2. 500 feet vertical separation.
3. Target resolution.
4. Wake turbulence separation will be provided to all aircraft operating:
 (a) Behind and less than 1,000 feet below super or heavy aircraft,
 (b) To small aircraft operating behind and less than 500 feet below B757 aircraft, and
 (c) To small aircraft following a large aircraft on final approach.
Chapter 4. AIR TRAFFIC CONTROL

4-1-20. TRANSPONDER OPERATION: On page 524, in subparagraph a., revise and add information as follows:

* * * * *

a. General

1. Pilots should be aware that proper application of transponder operating procedures will provide both VFR and IFR aircraft with a higher degree of safety while operating on the ground and airborne. Transponders with altitude reporting mode turned ON (Mode C or S) substantially increase the capability of surveillance systems to see an aircraft, thus providing the Air Traffic Controller increased situational awareness and the ability to identify potential traffic conflicts. Even VFR pilots who are not in contact with ATC will be afforded greater protection from IFR aircraft and VFR aircraft which are receiving traffic advisories. Nevertheless, pilots should never relax their visual scanning for other aircraft.

3. Transponder and ADS-B operations on the ground. Civil and military aircraft should operate with the transponder in the altitude reporting mode (consult the aircraft’s flight manual to determine the specific transponder position to enable altitude reporting) and ADS-B Out transmissions enabled (if equipped) at all airports, any time the aircraft is positioned on any portion of an airport movement area. This includes all defined taxiways and runways. Pilots must pay particular attention to ATIS and airport diagram notations, General Notes (included on airport charts), and comply with directions pertaining to transponder and ADS-B usage. Generally, these directions are:

(a) Departures. Select the transponder mode which allows altitude reporting and enable ADS-B (if equipped) during pushback or taxi-out from parking spot. Select TA or TA/RA (if equipped with TCAS) when taking the active runway.

(b) Arrivals. Maintain transponder to the altitude reporting mode or if TCAS-equipped (TA or TA/RA), select the transponder to altitude reporting mode. Maintain ADS-B Out transmissions (if equipped) after clearing the active runway. Select STBY or OFF for transponder and ADS-B (if equipped) upon arriving at the aircraft’s parking spot or gate.

4. Transponder and ADS-B Operations in the Air. EACH PILOT OPERATING AN AIRCRAFT EQUIPPED WITH AN OPERABLE ATC TRANSPONDER, MAINTAINED IN ACCORDANCE WITH 14 CFR SECTION 91.413 OR ADS-B TRANSMITTER, MUST OPERATE THE TRANSPONDER/TRANSMITTER, INCLUDING MODE C/S IF INSTALLED, ON THE APPROPRIATE MODE 3/A CODE OR AS ASSIGNED BY ATC. EACH PERSON OPERATING AN AIRCRAFT EQUIPPED WITH ADS-B OUT MUST OPERATE THIS EQUIPMENT IN THE TRANSMIT MODE AT ALL TIMES WHILE AIRBORNE UNLESS OTHERWISE REQUESTED BY ATC.

5. If entering a U.S. OFFSHORE AIRSPACE AREA *

6. A pilot on an IFR flight who elects to cancel *

7. It should be noted by all users of ATC transponders and ADS-B Out systems that the surveillance coverage they can expect is limited to “line of sight” with ground radar and ADS-B radio sites. Low altitude or aircraft antenna shielding by the aircraft itself may result in reduced range or loss of aircraft contact. Surveillance coverage can be improved by climbing to a higher altitude.

* * * * *

4-1-22. AIRPORT RESERVATION OPERATIONS AND SPECIAL TRAFFIC MANAGEMENT PROGRAMS: On page 529, revise format of subparagraph d.3. as follows:

* * * * *

3. For additional helpful key entries, see TBL 4-1-5.

* * * * *

4-2-4. AIRCRAFT CALL SIGNS: On page 531, revise subparagraph a.5. by adding the phrase “super” or “heavy” if appropriate.

* * * * *

5. Air carriers and commuter air carriers having FAA authorized call signs should identify themselves by stating the complete call sign (using group form for the numbers) and the word “super” or “heavy” if appropriate.

* * * * *

4-3-10. INTERSECTION TAKEOFFS: On page 540, revise subparagraphs f. and h. as follows:

* * * * *

f. Controllers are required to separate small aircraft that are departing from an intersection on the same runway (same or opposite direction) behind a large non-heavy aircraft (except B757), by ensuring that at least a 3-minute interval exists between the time the preceding large aircraft has taken off and the succeeding small aircraft begins takeoff roll. The 3-minute separation requirement will also be applied to small aircraft with a maximum certificated takeoff weight of 12,500 pounds or less departing behind a small aircraft with a maximum certificated takeoff weight of more than 12,500 pounds. To inform the pilot of the required 3-minute hold, the controller will state, “Hold for wake turbulence.” If after considering wake turbulence hazards, the pilot feels that a lesser time interval is appropriate, the pilot may request a waiver to the 3-minute interval. To initiate such a request, simply say “Request waiver to 3-minute interval.” or a similar statement. Controllers may then issue a takeoff clearanceices to other traffic permits, since the pilot has accepted the responsibility for wake turbulence separation.

* * * * *

h. A 4-minute interval is mandatory for small, large, and heavy aircraft behind a super aircraft. The 3-minute interval is mandatory for small aircraft behind a B757.

4-3-19. TAXI DURING LOW VISIBILITY: On page 546, revise subparagraph c. as follows:

* * * * *

c. Advisory Circular 120-57, Low Visibility Operations Surface Movement Guidance and Control System, commonly known as LVOSMIGCS (pronounced “LVO SMIGS”) describes an adequate example of a low visibility taxi plan for any airport which has takeoff or landing operations in less than 1,200 feet runway visual range (RVR) visibility conditions. These plans, which affect aircrew and vehicle operators, may incorporate additional lighting, markings, and procedures to control airport surface traffic. They will be addressed at two levels; operations less than 1,200 feet RVR to 500 feet RVR and operations less than 500 feet RVR.

* * * * *
4-4-14. VISUAL SEPARATION: On page 556, add information to subparagraph b. as follows:

b. A pilot’s acceptance of instructions to follow another aircraft or maintain visual separation from it is an acknowledgment that the pilot will maneuver the aircraft as necessary to avoid the other aircraft or to maintain in-trail separation. In operations conducted behind heavy aircraft, or a small aircraft behind a B757 or other large aircraft, it is also an acknowledgment that the pilot accepts the responsibility for wake turbulence separation. Visual separation is prohibited behind super aircraft.

* * * * *

4-5-7. AUTOMATIC DEPENDENT SURVEILLANCE-BROADCAST (ADS-B) SERVICES: On pages 567 and 568, in subparagraph a.1., delete the word “being” in the first sentence and add a reference to new figures as the last sentence; add new FIG 4-5-8 and FIG 4-5-9; and expand subparagraph f. as follows:

a. Introduction

1. Automatic Dependent Surveillance-Broadcast (ADS-B) is a surveillance technology deployed throughout the NAS (see color FIG 4-5-7 on page 441). The ADS-B system is composed of aircraft avionics and a ground infrastructure. Onboard avionics determine the position of the aircraft by using the GNSS and transmit its position along with additional information about the aircraft to ground stations for use by ATC and other ADS-B services. This information is transmitted at a rate of approximately once per second. (See FIG 4-5-8 and FIG 4-5-9.)
f. Reports of ADS-B Malfunctions

Users of ADS-B can provide valuable assistance in the correction of malfunctions by reporting instances of undesirable system performance. Since ADS-B performance is monitored by maintenance personnel rather than ATC, report malfunctions to the nearest Flight Service Station (FSS) facility by radio or telephone. Reporters should identify:

1. Condition observed.
2. Date and time of observation.
3. Altitude and location of observation.
4. Type and call sign of the aircraft.
5. Type and software version of avionics system.

4-5-9. FLIGHT INFORMATION SERVICE-BROADCAST (FIS-B):

On pages 569 and 570, revise subparagraph a., reword subparagraph b. and remove 1.-12. and the associated REFERENCES, add new REFERENCE under subparagraph b., and add new subparagraph c. as follows:

a. Introduction

FIS-B is a ground broadcast service provided through the ADS-B Services network over the 978 MHz UAT data link. The FAA FIS-B system provides pilots and flight crews of properly equipped aircraft with a cockpit display of certain aviation weather and aeronautical information. FIS-B reception is line-of-sight within the service volume of the ground infrastructure. (See FIG 4-5-8 and FIG 4-5-9.)

b. Weather Products

FIS-B does not replace a preflight weather briefing from a source listed in Paragraph 7-1-2, FAA Weather Services, or inflight updates from an FSS or ATC. FIS-B information may be used by the pilot for the safe conduct of flight and aircraft movement; however, the information should not be the only source of weather or aeronautical information. A pilot should be particularly alert and understand the limitations and quality assurance issues associated with individual products. This includes graphical representation of next generation weather radar (NEXRAD) imagery and Notices to Airmen (NOTAM)/temporary flight restrictions (TFR).

REFERENCE-
AIM, Paragraph 7-1-11, Flight Information Services
Advisory Circular AC 00-63, “Use of Cockpit Displays of Digital Weather and Aeronautical Information”

c. Reports of FIS-B Malfunctions

Users of FIS-B can provide valuable assistance in the correction of malfunctions by reporting instances of undesirable system performance. Since FIS-B performance is monitored by maintenance personnel rather than ATC, report malfunctions to the nearest Flight Service Station (FSS) facility by radio or telephone. Reporters should identify:

1. Condition observed.
2. Date and time of observation.
3. Altitude and location of observation.
4. Type and call sign of the aircraft.
5. Type and software version of avionics system.

4-5-10. AUTOMATIC DEPENDENT SURVEILLANCE-REBROADCAST (ADS-R):

On page 570, add new subparagraph a. and revise subsequent text to add a reference to new figures as the last sentence, and add new subparagraph c. as follows:

a. Introduction

ADS-R is a datalink translation function of the ADS-B * * * (See FIG 4-5-8 and FIG 4-5-9.)

b. Reports of ADS-R Malfunctions

Users of ADS-R can provide valuable assistance in the correction of malfunctions by reporting instances of undesirable system performance. Since ADS-R performance is monitored by maintenance personnel rather than ATC, report malfunctions to the nearest Flight Service Station (FSS) facility by radio or telephone. Reporters should identify:

1. Condition observed.
2. Date and time of observation.
3. Altitude and location of observation.
4. Type and call sign of the aircraft.
5. Type and software version of avionics system.
Chapter 5. AIR TRAFFIC PROCEDURES

5-1-16. RNAV AND RNP OPERATIONS: On page 603, revise subparagraph f.2. as follows:

 f. During the pre-flight planning phase RAIM *

 * * * *

On page 603, add new paragraph as follows:

5-1-17. COLD TEMPERATURE OPERATIONS

Pilots should begin planning for operating into airports with cold temperatures during the preflight planning phase. Instrument approach charts will contain a snowflake symbol and a temperature when cold temperature correction must be applied. Pilots operating into airports requiring cold temperature corrections should request the lowest forecast temperature at the airport for departure and arrival times. If the temperature is forecast to be at or below any published cold temperature restriction, calculate an altitude correction for the appropriate segment(s) and/or review procedures for operating automatic cold temperature compensating systems, as applicable. The pilot is responsible to calculate and apply the corrections to the affected segment(s) when the actual reported temperature is at or below any published cold temperature restriction, or pilots with automatic cold temperature compensating systems must ensure the system is on and operating on each designated segment. Advise ATC when intending to apply cold temperature correction and of the amount of correction required on initial contact (or as soon as possible) for the intermediate segment and/or the published missed approach. This information is required for ATC to provide aircraft appropriate vertical separation between known traffic.

REFERENCE—
AIM, Paragraph 7-2-3, Altimeter Errors
AIM TBL 7-2-3, ICAO Cold Temperature Error

On page 604, revise the paragraph 5-2-2 title by adding the word “Automated” and the subsequent subparagraphs as follows:

5-2-2. AUTOMATED PRE-DEPARTURE CLEARANCE PROCEDURES

a. Many airports in the National Airspace System are equipped with the Tower Data Link System (TDLS) that includes the Pre-departure Clearance (PDC) and Controller Pilot Data Link Communication-Departure Clearance (CPDLC-DCL) functions. Both the PDC and CPDLC-DCL functions automate the Clearance Delivery operations in the ATCT for participating users. Both functions display IFR clearances from the ARTCC to the ATCT. The Clearance Delivery controller in the ATCT can append local departure information and transmit the clearance via data link to participating airline/service provider computers for PDC. The airline/service provider will then deliver the clearance via the Aircraft Communications Addressing and Reporting System (ACARS) or a similar data link system or, for non-data link equipped aircraft, via a printer located at the departure gate. For CPDLC-DCL, the departure clearance is uplinked from the ATCT via the Future Air Navigation System (FANS) to the aircraft avionics and requires a response from the flight crew. Both PDC and CPDLC-DCL reduce frequency congestion, controller workload, and are intended to mitigate delivery/read back errors.

b. Both services are available only to participating aircraft that have subscribed to the service through an approved service provider.

c. In all situations, the pilot is encouraged to contact clearance delivery if a question or concern exists regarding an automated clearance. Due to technical reasons, the following limitations/differences exist between the two services:

1. PDC

 (a) Aircraft filing multiple flight plans are limited to one PDC clearance per departure airport within an 18-hour period. Additional clearances will be delivered verbally.

 (b) If the clearance is revised or modified prior to delivery, it will be rejected from PDC and the clearance will need to be delivered verbally.

 (c) No acknowledgment of receipt or read back is required for a PDC.

2. CPDLC-DCL

 (a) No limitation to the number of clearances received.

 (b) Allows delivery of revised flight data, including revised departure clearances.

 (c) A response from the flight crew is required.

 (d) Requires a logon using the International Civil Aviation Organization (ICAO) airport facility identification (for example, KSJC utilizing the ATC FANS application).

 (e) To be eligible, operators must have received CPDLC/FANS authorization from the responsible civil aviation authority, and file appropriate equipment information in ICAO field 10a and in the ICAO field 18 DAT (Other Data Applications) of the flight plan.
5-2-8. INSTRUMENT DEPARTURE PROCEDURES (DP) - OBSTACLE DEPARTURE PROCEDURES (ODP) AND STANDARD INSTRUMENT DEPARTURES (SID): On page 608, replace subparagraph b.7 as follows:

b. What criteria is used to provide obstruction clearance

* * * * *

7. A Visual Climb Over Airport (VCOA) procedure is a departure option for an IFR aircraft, operating in visual meteorological conditions equal to or greater than the specified visibility and ceiling, to visually conduct climbing turns over the airport to the published “climb-to” altitude from which to proceed with the instrument portion of the departure. VCOA procedures are developed to avoid obstacles greater than 3 statute miles from the departure end of the runway as an alternative to complying with climb gradients greater than 200 feet per nautical mile. Pilots are responsible to advise ATC as early as possible of the intent to fly the VCOA option prior to departure. These textual procedures are published in the Take-Off Minimums and (Obstacle) Departure Procedures section of the Terminal Procedures Publications and/or appear as an option on a Graphic ODP.

* * * * *

On pages 621, 623, 631, and 632 revise the paragraph 5-4-5 title by adding “(IAP),” revise subparagraphs c. and h.-l., and add new FIG 5-4-13 as follows:

5-4-5. INSTRUMENT APPROACH PROCEDURE (IAP) CHARTS

* * * * *

c. Minimum Safe Altitudes (MSA) are published for emergency use on IAP charts. MSAs provide 1,000 feet of clearance over all obstacles, but do not necessarily assure acceptable navigation signal coverage. The MSA depicted on the plan view of an approach chart contains the identifier of the center point of the MSA, the applicable radius of the MSA, a depiction of the sector(s), and the minimum altitudes above mean sea level which provide obstacle clearance. For conventional navigation systems, the MSA is normally based on the primary omnidirectional facility on which the IAP is predicated, but may be based on the airport reference point (ARP) if no suitable facility is available. For RNAV approaches, the MSA is based on an RNAV waypoint. MSAs normally have a 25 NM radius; however, for conventional navigation systems, this radius may be expanded to 30 NM if necessary to encompass the airport landing surfaces. A single sector altitude is normally established, however when the MSA is based on a facility and it is necessary to obtain relief from obstacles, an MSA with up to four sectors may be established.

* * * * *

h. The Visual Descent Point (VDP), identified by the symbol (V), is a defined point on the final approach course of a nonprecision straight-in approach procedure from which a stabilized visual descent from the MDA to the runway touchdown point may be commenced. The pilot should not descend below the MDA prior to reaching the VDP. The VDP will be identified by DME or RNAV along-track distance to the MAP. The VDP distance is based on the lowest MDA published on the IAP and harmonized with the angle of the visual glide slope indicator (VGSI) (if installed) or the procedure VDA (if no VGSI is installed). A VDP may not be published under certain circumstances which may result in a destabilized descent between the MDA and the runway touchdown point. Such circumstances include an obstacle penetrating the visual surface between the MDA and runway threshold, lack of distance measuring capability, or the procedure design prevents a VDP to be identified.

1. VGSI systems may be used as a visual aid to the pilot to determine if the aircraft is in a position to make a stabilized descent from the MDA. When the visibility is close to minimums, the VGSI may not be visible at the VDP due to its location beyond the MAP.

2. Pilots not equipped to receive the VDP should fly the approach procedure as though no VDP had been provided.

3. On a straight-in nonprecision IAP, descent below the MDA between the VDP and the MAP may be inadvisable or impossible. Aircraft speed, height above the runway, descent rate, amount of turn, and runway length are some of the factors which must be considered by the pilot to determine if a safe descent and landing can be accomplished.

i. A visual segment obstruction evaluation is accomplished during procedure design on all IAPs. Obstacles (both lighted and unlighted) are allowed to penetrate the visual segment obstacle identification surfaces. Identified obstacle penetrations may cause restrictions to instrument approach operations which may include an increased approach visibility requirement, not publishing a VDP, and/or prohibiting night instrument operations to the runway. There is no implicit obstacle protection from the MDA/DA to the touchdown point. Accordingly, it is the responsibility of the pilot to visually acquire and avoid obstacles below the MDA/DA during transition to landing.

1. Unlighted obstacle penetrations may result in prohibiting night instrument operations to the runway. A chart note will be published in the pilot briefing strip “Procedure NA at Night.”

2. Use of a VGSI may be approved in lieu of obstruction lighting to restore night instrument operations to the runway. A chart note will be published in the pilot briefing strip “Straight-in Rwy XX at Night, operational VGSI required, remain on or above VGSI glidepath until threshold.”

j. The highest obstacle (man-made, terrain, or vegetation) will be charted on the planview of an IAP. Other obstacles may be charted in either the planview or the airport sketch based on distance from the runway and available chart space. The elevation of the charted obstacle will be shown to the nearest foot above mean sea level. Obstacles without a verified accuracy are indicated by a ± symbol following the elevation value.

k. Vertical Descent Angle (VDA). FAA policy is to publish VDAs on all nonprecision approaches except those published in conjunction with vertically guided minimums or no-FAF procedures without step-down fixes. A VDA does not guarantee obstacle protection below the MDA in the visual segment. The presence of a VDA does not change any nonprecision approach requirements.
1. Obstacles may penetrate the visual segment of an IAP that has a published VDA. When the VDA is not authorized due to an obstacle penetration that would require a pilot to deviate from the VDA between MDA and touchdown, the VDA/TCH will be replaced with the note “Visual Segment-Obstacles” in the profile view of the IAP (See FIG 5-4-13). Accordingly, pilots are advised to carefully review approach procedures to identify where the optimum stabilized descent to landing can be initiated. Pilots that follow the previously published descent angle below the MDA on procedures with this note may encounter obstacles in the visual segment.

2. The threshold crossing height (TCH) used to compute the descent angle is published with the VDA. The VDA and TCH information are charted on the profile view of the IAP following the fix (FAF/stepdown) used to compute the VDA. If no PA/APV IAP is established to the same runway, the VDA will be equal to or higher than the glide path angle of the VGSI installed on the same runway provided it is within instrument procedure criteria. A chart note will indicate if the VGSI is not coincident with the VDA. Pilots must be aware that the published VDA is for advisory information only and not to be considered instrument derived vertical guidance. The VDA solely offers an aid to help pilots establish a continuous, stabilized descent during final approach.

3. Pilots may use the published angle and estimated/actual groundspeed to find a target rate of descent from the rate of descent table published in the back of the U.S. Terminal Procedures Publication. This rate of descent can be flown with the Vertical Velocity Indicator (VVI) in order to use the VDA as an aid to flying a stabilized descent. No special equipment is required.

4. A straight-in aligned procedure may be restricted to circling only minimums when an excessive descent gradient necessitates. The descent angle between the FAF/stepdown fix and the Circling MDA must not exceed the maximum descent angle allowed by TERPS criteria. A published VDA on these procedures does not imply that landing straight ahead is recommended or even possible. The descent rate based on the VDA may exceed the capabilities of the aircraft and the pilot must determine how to best maneuver the aircraft within the circling area in order to land safely.

I. In isolated cases, an IAP may contain a published visual flight path. These procedures are annotated “Fly Visual to Airport” or “Fly Visual.” A dashed arrow indicating the visual flight path will be included in the profile and plan views with an approximate heading and distance to the end of the runway.

1. The depicted ground track associated with the “Fly Visual to Airport” segment should be flown as a “Dead Reckoning” course. When executing the “Fly Visual to Airport” segment, the flight visibility must not be less than that prescribed in the IAP; the pilot must remain clear of clouds and proceed to the airport maintaining visual contact with the ground. Altitude on the visual flight path is at the discretion of the pilot, and it is the responsibility of the pilot to visually acquire and avoid obstacles in the “Fly Visual to Airport” segment.

2. Missed approach obstacle clearance is assured only if the missed approach is commenced at the published MAP. Before initiating an IAP that contains a “Fly Visual to Airport” segment, the pilot should have preplanned climb out options based on aircraft performance and terrain features. Obstacle clearance is the responsibility of the pilot when the approach is continued beyond the MAP.

NOTE—
The FAA Administrator retains the authority to approve instrument approach procedures where the pilot may not necessarily have one of the visual references specified in 14 CFR Sec. 91.175 and related rules. It is not a function of procedure design to ensure compliance with Sec. 91.175. The annotation “Fly Visual to Airport” provides relief from Sec. 91.175 requirements that the pilot have distinctly visible and identifiable visual references prior to descent below MDA/DA.

* * * * *

On pages 636-658, change FIGs 5-4-13 through 5-4-31 to FIGs 5-4-14 through 5-4-32.

Example of a Chart Note

\[FIG 5-4-13 \]
5-4-14. PARALLEL ILS APPROACHES (DEPENDENT): On page 643, revise subparagraph c. as follows:

* * * * *

c. A minimum of 1.0 NM radar separation (diagonal) is required between successive aircraft on the adjacent final approach course when runway centerlines are at least 2,500 feet but no more than 3,600 feet apart. A minimum of 1.5 NM radar separation (diagonal) is required between successive aircraft on the adjacent final approach course when runway centerlines are more than 3,600 feet but no more than 4,300 feet apart. * * * *

5-5-4. INSTRUMENT APPROACH: On page 659, add new subparagraph a.4. and REFERENCE as follows:

* * * * *

4. When applicable, apply cold temperature correction to instrument approach segments. Advise ATC when intending to apply cold temperature correction and of the amount of correction required for each affected segment on initial contact (or as soon as possible). This information is required for ATC to provide aircraft appropriate vertical separation between known traffic.

REFERENCE–
AIM, Paragraph 7-2-3, Altimeter Errors
AIM, TBL 7-2-3, ICAO Cold Temperature Error
* * * * *

5-5-5. MISSED APPROACH: On page 659, add new subparagraph a.5. and REFERENCE and renumber old subparagraph a.5. as a.6. as follows:

* * * * *

5. When applicable, apply cold temperature correction to the published missed approach segment. Advise ATC when intending to apply cold temperature correction and of the amount of correction required on initial contact (or as soon as possible). This information is required for ATC to provide aircraft appropriate vertical separation between known traffic. The pilot must not apply an altitude correction to an assigned altitude when provided an initial heading to fly or radar vector in lieu of published missed approach procedures, unless approved by ATC.

REFERENCE–
AIM, Paragraph 7-2-3, Altimeter Errors
AIM, TBL 7-2-3, ICAO Cold Temperature Error
* * * * *

5-5-11. VISUAL APPROACH: On page 661, revise subparagraph b.5. as follows:

* * * * *

5. For all aircraft, inform the pilot when the preceding aircraft is a heavy. Inform the pilot of a small aircraft when the preceding aircraft is a B757. Visual separation is prohibited behind super aircraft. * * * *

5-5-14. INSTRUMENT DEPARTURES: On page 662, revise subparagraph a.3. as follows:

* * * * *

3. Determines whether an obstacle departure procedure (ODP) and/or DP is available for obstruction avoidance. One option may be a Visual Climb Over Airport (VCOA). Pilots must advise ATC as early as possible of the intent to fly the VCOA prior to departure. * * * *

Chapter 7. SAFETY OF FLIGHT

7-3-8. PILOT RESPONSIBILITY: On page 736, revise subparagraphs d.-e. to add "super" as follows:

* * * * *

d. For operations conducted behind super or heavy aircraft, ATC will specify the word "super" or "heavy" as appropriate, when this information is known. Pilots of super or heavy aircraft should always use the word "super" or "heavy" in radio communications.

e. Super, heavy, and large jet aircraft operators * * *

* * * * *

7-3-9. AIR TRAFFIC WAKE TURBULENCE SEPARATIONS: On pages 736-737, revise subparagraphs a.-b., divide and revise old subparagraph c. into new subparagraphs c.-d., and revise newly redesignated subparagraphs e.-f. as follows:

a. Because of the possible effects of wake turbulence, controllers are required to apply no less than specified minimum separation to all IFR aircraft, to all VFR aircraft receiving Class B or Class C airspace services when operating behind super or heavy aircraft, and to small aircraft operating behind a B757.

1. Separation is applied to aircraft operating directly behind a super or heavy at the same altitude or less than 1,000 feet below, and to small aircraft operating directly behind a B757 at the same altitude or less than 500 feet below:

(a) Heavy behind super – 6 miles.
(b) Large behind super – 7 miles.
(c) Small behind super – 8 miles.
(d) Heavy behind heavy – 4 miles.
(e) Small/large behind heavy – 5 miles.
(f) Small behind B757 – 4 miles.

2. Also, separation, measured at the time the preceding aircraft is over the landing threshold, is provided to small aircraft:

(a) Small landing behind heavy – 6 miles.
(b) Small landing behind large, non-B757 – 4 miles.

REFERENCE–
Pilot/Controller Glossary Term–Aircraft Classes.
3. Additionally, appropriate time or distance intervals are provided to departing aircraft when the departure will be from the same threshold, a parallel runway separated by less than 2,500 feet with less than 500 feet threshold stagger, or on a crossing runway and projected flight paths will cross:

 (a) Three minutes or the appropriate radar separation when takeoff will be behind a super aircraft;

 (b) Two minutes or the appropriate radar separation when takeoff will be behind a heavy aircraft.

 (c) Two minutes or the appropriate radar separation when a small aircraft will takeoff behind a B757.

 NOTE— Controllers may not reduce or waive these intervals.

 a. A 3-minute interval will be provided when a small aircraft will takeoff:

 1. From an intersection on the same runway (same or opposite direction) behind a departing large aircraft (except B757), or

 2. In the opposite direction on the same runway behind a large aircraft (except B757) takeoff or low/missed approach.

 NOTE— This 3-minute interval may be waived upon specific pilot request.

 b. A 3-minute interval will be provided when a small aircraft will takeoff:

 1. From an intersection on the same runway (same or opposite direction) behind a departing B757, or

 2. In the opposite direction on the same runway behind a B757 takeoff or low/missed approach.

 NOTE— This 3-minute interval may not be waived.

 d. A 4-minute interval will be provided for all aircraft taking off behind a super aircraft, and a 3-minute interval will be provided for all aircraft taking off behind a heavy aircraft when the operations are as described in subparagraphs b1 and b2 above, and are conducted on either the same runway or parallel runways separated by less than 2,500 feet. Controllers may not reduce or waive this interval.

 e. Pilots may request additional separation (i.e., 2 minutes instead of 4 or 5 miles) for wake turbulence avoidance. This request should be made as soon as practical on ground control and at least before taxiing onto the runway.

 NOTE— 14 CFR Section 91.3(a) states: “The pilot-in-command of an aircraft is directly responsible for and is the final authority as to the operation of that aircraft.”

 f. Controllers may anticipate separation and need not withhold a takeoff clearance for an aircraft departing behind a large, heavy, or super aircraft if there is reasonable assurance the required separation will exist when the departing aircraft starts takeoff roll.
Appendix 3. ABBREVIATIONS/ACRONYMS

On page 783, delete “WAC.”

PILOT/CONTROLLER GLOSSARY

On pages 786, 788, 792-793, 799-800, 804, 809-810, 812, 816-817, 822, 825, 830-834, add, revise, and delete the following:

AERONAUTICAL CHART - A map used in air navigation containing all or part of the following: Topographic features, hazards and obstructions, navigation aids, navigation routes, designated airspace, and airports. Commonly used aeronautical charts are:

a. Sectional Aeronautical Charts (1:500,000).

b. VFR Terminal Area Charts (1:250,000).

c. World Aeronautical Charts (WAC) (1:1,000,000).

d. En Route Low Altitude Charts.

e. En Route High Altitude Charts.

g. Instrument Departure Procedure (DP) Charts.

h. Standard Terminal Arrival (STAR) Charts.

i. Airport Taxi Charts.

(See ICAO term AERONAUTICAL CHART.)

AUTOMATED PROBLEM DETECTION BOUNDARY (APB) - The adapted distance beyond a facilities boundary defining the airspace within which EDST performs conflict detection.

(See EN ROUTE DECISION SUPPORT TOOL.)

AUTOMATED RADAR TERMINAL SYSTEMS (ARTS) - A generic term for several tracking systems included in the Terminal Automation Systems (TAS). ARTS plus a suffix roman numeral denotes a major modification to that system.

a. ARTS IIIA.

b. Common ARTS.

c. Programmable Indicator Data Processor (PIDP).

AUTOMATICDEPENDENT SURVEILLANCE-REBROADCAST (ADS-R) is a datalink translation function of the ADS-B ground system required to accommodate the two separate operating frequencies (978 MHz and 1090 ES). The ADS-B system receives the ADS-B messages transmitted on one frequency and ADS-R translates and reformats the information for rebroadcast and use on the other frequency. This allows ADS-B In equipped aircraft to see nearby ADS-B Out traffic regardless of the operating link of the other aircraft. Aircraft operating on the same ADS-B frequency exchange information directly and do not require the ADS-R translation function.

DIRECT ALTITUDE AND IDENTITY READOUT - [deleted]

DROP ZONE - Any pre-determined area upon which parachutists or objects land after making an intentional parachute jump or drop.

(Refer to 14 CFR Sec. 105.3, Definitions.)

EDST - (See EN ROUTE DECISION SUPPORT TOOL.)

EN ROUTE DECISION SUPPORT TOOL - An automated tool provided at each Radar Associate position in selected En Route facilities. This tool utilizes flight and radar data to determine present and future trajectories for all active and proposal aircraft and provides enhanced automated flight data management.

GRAPHIC PLAN DISPLAY (GPD) - A view available with EDST that provides a graphic display of aircraft, traffic, and notification of predicted conflicts. Graphic routes for Current Plans and Trial Plans are displayed upon controller request.

(See EN ROUTE DECISION SUPPORT TOOL.)

JUMP ZONE - The airspace directly associated with a Drop Zone. Vertical and horizontal limits may be locally defined.

LOW ALTITUDE ALERT SYSTEM - [deleted]
GLEIM FAR/AIM 2016 UPDATES

MINIMUM SAFE ALTITUDE -

a. The minimum altitude specified in 14 CFR Part 91 for various aircraft operations.
b. Altitudes depicted on approach charts which provide at least 1,000 feet of obstacle clearance for emergency use. These altitudes will be identified as Minimum Safe Altitudes or Emergency Safe Altitudes and are established as follows:

1. Minimum Safe Altitude (MSA). Altitudes depicted on approach charts which provide at least 1,000 feet of obstacle clearance within a 25-mile radius of the navigation facility, waypoint, or airport reference point upon which the MSA is predicated. MSAs are for emergency use only and do not necessarily assure acceptable navigational signal coverage.
 (See ICAO term MINIMUM SECTOR ALTITUDE.)

2. Emergency Safe Altitude (ESA). Altitudes depicted on approach charts which provide at least 1,000 feet of obstacle clearance in nonmountainous areas and 2,000 feet of obstacle clearance in designated mountainous areas within a 100-mile radius of the navigation facility or waypoint used as the ESA center. These altitudes are normally used only in military procedures and are identified on published procedures as “Emergency Safe Altitudes.”

OCEANIC ERROR REPORT - A report filed when ATC observes an Oceanic Error as defined by FAAO 7110.82, Reporting Oceanic Errors.

OUTER AREA (associated with Class C airspace) - Nonregulatory airspace surrounding designated Class C airspace airports where ATC provides radar vectoring and sequencing on a full-time basis for all IFR and participating VFR aircraft. The service provided in the outer area is called Class C service which includes: IFR/IFR-IFR separation; IFR/VFR-traffic advisories and conflict resolution; and VFR/VFR-traffic advisories and, as appropriate, safety alerts. The normal radius will be 20 nautical miles with some variations based on site-specific requirements. The outer area extends outward from the primary Class C airspace airport and extends from the lower limits of radar/radio coverage up to the ceiling of the approach control’s delegated airspace excluding the Class C charted area and other airspace as appropriate.
 (See CONFLICT RESOLUTION.)
 (See CONTROLLED AIRSPACE.)

PLANS DISPLAY - A display available in EDST that provides detailed flight plan and predicted conflict information in textual format for requested Current Plans and all Trial Plans.
 (See EN ROUTE DECISION SUPPORT TOOL.)

ROUTE ACTION NOTIFICATION - EDST notification that a PAR/PDR/PDAR has been applied to the flight plan.
 (See ATC PREFERRED ROUTE NOTIFICATION.)
 (See EN ROUTE DECISION SUPPORT TOOL.)

SPECIAL ACTIVITY AIRSPACE (SAA) - Any airspace with defined dimensions within the National Airspace System wherein limitations may be imposed upon aircraft operations. This airspace may be restricted areas, prohibited areas, military operations areas, air ATC assigned airspace, and any other designated airspace areas. The dimensions of this airspace are programmed into EDST and can be designated as either active or inactive by screen entry. Aircraft trajectories are constantly tested against the dimensions of active areas and alerts issued to the applicable sectors when violations are predicted.
 (See EN ROUTE DECISION SUPPORT TOOL.)

TPX-42 - [deleted]

TRAJECTORY - A EDST representation of the path an aircraft is predicted to fly based upon a Current Plan or Trial Plan.
 (See EN ROUTE DECISION SUPPORT TOOL.)

UNMANNED AIRCRAFT (UA) - A device used or intended to be used for flight that has no onboard pilot. This device can be any type of airplane, helicopter, airship, or powered-lift aircraft. Unmanned free balloons, moored balloons, tethered aircraft, gliders, and unmanned rockets are not considered to be a UA.

UNMANNED AIRCRAFT SYSTEM - An unmanned aircraft and its associated elements related to safe operations, which may include control stations (ground, ship, or air based), control links, support equipment, payloads, flight termination systems, and launch/recovery equipment. It consists of three elements: unmanned aircraft, control station, and data link.

URET - [deleted]

USER REQUEST EVALUATION TOOL (URET) - [deleted]

VISUAL CLIMB OVER AIRPORT (VCOA) - A departure option for an IFR aircraft, operating in visual meteorological conditions equal to or greater than the specified visibility and ceiling, to visually conduct climbing turns over the airport to the published “climb-to” altitude from which to proceed with the instrument portion of the departure. VCOA procedures are developed to avoid obstacles greater than 3 statute miles from the departure end of the runway as an alternative to complying with climb gradients greater than 200 feet per nautical mile. Pilots are responsible to advise ATC as early as possible of the intent to fly the VCOA option prior to departure. These textual procedures are published in the ‘Take-Off Minimums and (Obstacle) Departure Procedures’ section of the Terminal Procedures Publications and/or appear as an option on a Graphic ODP.
 (See AIM.)

VORTEXES - Circular patterns of air created by the movement of an airfoil through the air when generating lift. As an airfoil moves through the atmosphere in sustained flight, an area of low pressure is created above it. The air flowing from the high pressure area to the low pressure area around and about the tips of the airfoil tends to roll up into two rapidly rotating vortices, cylindrical in shape. These vortices are the most predominant parts of aircraft wake turbulence and their rotational force is dependent upon the wing loading, gross weight, and speed of the generating aircraft. The vortices from medium to super aircraft can be of extremely high velocity and hazardous to smaller aircraft.
 (See AIRCRAFT CLASSES.)
 (See WAKE TURBULENCE.)
 (Refer to AIM.)

WORLD AERONAUTICAL CHARTS - [deleted]
PART 91—GENERAL OPERATING AND FLIGHT RULES

Sec. 91.1607 Special Federal Aviation Regulation No. 113--Prohibition Against Certain Flights in the Simferopol (UKFV) and Dnipropetrovsk (UKDV) Flight Information Regions (FIRs). On page 197, revise paragraphs (a)(2), (c), and (e) as follows:

(a) *(c) Permitted operations. This section does not prohibit persons described in paragraph (a) of this section from conducting flight operations in either or both of the Simferopol (UKFV) or Dnipropetrovsk (UKDV) FIRs, provided that such flight operations are conducted under a contract, grant, or cooperative agreement with a department, agency, or instrumentality of the U.S. government (or under a subcontract between the prime contractor of the department, agency, or instrumentality and the person described in paragraph (a) of this section) with the approval of the FAA, or under an exemption issued by the FAA. The FAA will process requests for approval or exemption in a timely manner, with the order of preference being: first, for those operations in support of U.S. government-sponsored activities; second, for those operations in support of government-sponsored activities of a foreign country with the support of a U.S. government department, agency, or instrumentality; and third, for all other operations.

(e) Expiration. This SFAR will remain in effect until October 27, 2016. The FAA may amend, rescind, or extend this SFAR as necessary.
GLEIM FAR/AIM 2016 UPDATES

August 27, 2015

Effective September 15, 2015, through September 15, 2016

PART 71—DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS

Sec. 71.1 Applicability. On page 119, revise date and policy references as follows:

A listing for Class A, B, C, D, and E airspace areas; air traffic service routes; and reporting points can be found in FAA Order 7400.9Z, Airspace Designations and Reporting Points, dated August 6, 2015. This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. The approval to incorporate by reference FAA Order 7400.9Z is effective September 15, 2015, through September 15, 2016. During the incorporation by reference period, proposed changes to the listings of Class A, B, C, D, and E airspace areas; air traffic service routes; and reporting points will be published in full text as proposed rule documents in the Federal Register. Amendments to the listings of Class A, B, C, D, and E airspace areas; air traffic service routes; and reporting points will be published in full text as final rules in the Federal Register. Periodically, the final rule amendments will be integrated into a revised edition of the Order and submitted to the Director of the Federal Register for approval for incorporation by reference in this section. Copies of FAA Order 7400.9Z may be obtained from Airspace Policy and Regulations Group, Federal Aviation Administration, 800 Independence Avenue SW., Washington, DC 20591, (202) 267-8783. An electronic version of the Order is available on the FAA Web site at http://www.faa.gov/air_traffic/publications. Copies of FAA Order 7400.9Z may be inspected in Docket No. FAA-2015-3375; Amendment No. 71-47 on http://www.regulations.gov. A copy of FAA Order 7400.9Z may be inspected at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal-register/cfr/ibr-locations.html.

Secs. 71.5, 71.15, 71.31, 71.33, 71.41, 71.51, 71.61, 71.71, and 71.901. On pages 119 and 120, replace the words "FAA Order 7400.9Y" with "FAA Order 7400.9Z."
August 14, 2015

Effective August 14, 2015

PART 1—DEFINITIONS AND ABBREVIATIONS

Sec. 1.1 General definitions. On page 21, remove the definitions beginning with V_A and ending with V_S.